Showing posts with label biochar. Show all posts
Showing posts with label biochar. Show all posts

Sunday, October 30, 2022

Transforming Society


How can the problems of war, climate collapse and famine best be addressed? 

Earlier this year, the U.N. issued a warning about famine, pointing out that war is compounding the problems of climate disruption and famine, adding that the "main costs to farmers are fertilizers and energy". The U.N. statement follows many news media reports about the rising cost of living.  

How can these problems best be addressed? For more than two decades, two sets of feebates have been recommended to help achieve agriculture reform and a rapid transition to clean, renewable energy, as depicted in the images in this post and as discussed in many earlier posts and the text below.


Agricultural Reform

Agriculture uses half of habitable land. Agriculture uses 70% to 90% of the freshwater supply. Most farmland is used to produce meat and diary. A 2019 Greenpeace analysis found over 71% of EU farmland to be dedicated to meat and dairy. Much agricultural land is used unsustainably in many ways; there is growing dependence on chemical fertilizers and weedkillers & herbicides, fungicides, insecticides, rodenticides and other pesticides; there is also a growing dependency on fossil fuel in many agricultural and food-related activities; and there is a growing demand for water. This causes huge emissions of greenhouse gases, pollution with toxic compounds, depletion of groundwater, salinification and erosion of soil and loss of soil nutrients and soil carbon content, and loss of diversity of many of the plants, the wildlife and the microorganisms that helped the world population grow to 8 billion people


Changing from food that is rich in meat and dairy to vegan-organic food can free up large areas of land that can instead be used for other purposes such as community gardens and food forests. It can bring down the cost of food and it can, in combination with biochar, restore the soil's carbon, moisture and nutrients content.

Instead of adding chemical nitrogen fertilizers - typically produced with natural gas - in annually-planted monocultures, it's better to have a diversity of vegetation including a variety of perennial plants such as legumes and trees. Furthermore, pyrolyzing biowaste should be encouraged, as this reduces fire hazards and produces biochar that can be added to soil to sequester carbon and to increase nutrients and moisture in the soil. According to Schmidt et al., 400,000 pyrolysis plants need to be built to process 3.8 billion tons of biowaste annually.

Local councils could encourage this by adding extra fees to rates for land where soil carbon falls, while using the revenue for rebates on rates for land where soil carbon rises.

That way, adding biochar effectively becomes a tool to lower rates, while it will also help improve the soil's fertility, its ability to retain water and to support more vegetation. That way, real assets are built, as illustrated by the image on the right, from the 2014 post Biochar Builds Real Assets.

Two sets of feebates can strongly reduce the greenhouse gases in the atmosphere, specifically carbon dioxide (C₂O), methane (CH₄) and nitrous oxide (N₂O).

[ from earlier post ]
The contribution of agriculture to emissions of carbon dioxide and especially methane is huge. The image on the right illustrates the difference between using a Gobal Warming Potential (GWP) for methane of 171 over a few years versus 28 over 100 years.

Nitrous oxide is also important, as a potent greenhouse gas and also as an ozone depleting substance (ODS). The impact of nitrous oxide as an ODS has grown relative to the impact of CFCs, as the abundance of nitrous oxide has kept rising in the atmosphere.

The IPCC in AR6 gives nitrous oxide a lifetime of 109 years and a GWP of 273. A 2017 study warns about increased nitrous oxide emissions from Arctic peatlands after permafrost thaw.

Furthermore, a recent study finds that nitrous oxide emissions contribute strongly to cirrus clouds, especially when ammonia, nitric acid and sulfuric acid are present together. Cirrus clouds exerts a net positive radiative forcing of about 5 W m⁻², according to IPCC AR6.

Much of current nitrous oxide emissions is caused by nitrogen fertilizers. Legumes include beans, peas, peanuts, lentils, lupins, mesquite, carob, tamarind, alfalfa, and clover. Legumes can naturally fix nitrogen to the soil, thus reducing the need for nitrogen fertilizer and in turn reducing the associated emissions, including emissions of methane and nitrous oxide.

Adding nitrogen fertilizer can also cause the formation of dead zones in lakes and oceans. Dead zones occur when the water gets too many nutrients, such as phosphorus and nitrogen from fertilizers, resulting in oxygen depletion at the top layer of oceans, which can also increase nitrous oxide releases.

In the video on the right, Jim McHenry discusses ways to improve the situation. 

All too often, chemical nitrogen fertilizers are added unnecessarily. The intent may be to help the plants grow, e.g. when leaves of plants turn yellow or when there is little growth. But it may actually be that the plants get too little water because the roots of the plants were damaged or too short, or that there was too little shade and too much sun. Excessive nitrogen fertilization and irrigation can then result in a lot of green leaves, but this growth can come at the expense of good food.

Instead, with a good mix of vegetation, there's little or no need to add chemical nitrogen fertilizer, since nitrogen-fixing plants such as legumes can help fast-growing plants get the necessary nitrogen, while the fast-growing plants provide shade for the legumes and the soil. Next to providing shade, the tall, sturdy stalks of plants such as corn can give the vines of beans something to attach themselves to. Fast-growing pants can provide a lot of shade to other plants and to the soil, thus keeping the soil moist, while also preventing the infiltration and growth of weeds and while also deterring pests with their spiny leaves.

Trees can lower surface temperatures by providing shade and by holding colder air under their canopy, thus avoiding extreme temperatures that could also cause the soil to get too dry. The roots of trees prevent erosion and guide rainwater to reach greater depth, thus avoiding that the soil gets too wet in case of heavy rain. Trees then pump water up from deep in the ground with their roots and much of the water comes out again through leaves (evapotranspiration), which stimulates rainfall. Furthermore, trees release pheromones (that attract pollinators) and other aerosols such as terpenes. Trees are typically narrower at the top and wider below, and through their shape and by standing up high they can guide the wind upward, while water vapor released from leaves also helps lift these aerosols into the air.  Raindrops forming around these aerosols will further stimulate the formation of lower cloud decks that provide shade, that reflect sunlight back into space and that produce more rainfall locally.

Furthermore, olivine sand can be used to create borders for gardens, footpaths and bicycle paths. Where needed, olivine sand could also be added on top of biochar, as the light color of olivine sand reflects more sunlight, while olivine can also soak up excess water and sequester carbon, while adding nutrients to the soil. By redesigning urban areas, more space can be used for trees, which also reduces the urban heat island effect and thus lowers temperatures.

In the video below, Paul Beckwith discusses global food shortages.


Also important is the transition to a vegan-organic diet. This can dramatically reduce the need for land and water, while additionally reducing greenhouse gas emissions. A good mix and variety of vegetation can help each of the plants through symbiotic interaction grow an abundance of vegan-organic food locally in a sustainable way.

Pyrolysis of biowaste is recommended as this can turn most carbon into biochar, resulting in high carbon sequestration rates, and increased capacity of the soil to retain carbon, nutrients and moisture, thus reducing erosion, fire hazards and greenhouse gas emissions, while increasing vegetation growth resulting in additional drawdown of carbon from the atmosphere. 

Most of the biowaste can be pyrolyzed and returned to the soil in the form of biochar. Some of the biowaste can also be used to construct buildings. Instead of cutting down the largest and most healthy trees to do so, which now all too often happens, it makes more sense to instead remove only dead trees and biowaste from the forest floor. Such use of biowaste could provide funding for the process of waste removal from the forest floor. For most biowaste (including kitchen and garden waste, and sewage), it makes sense to turn it into biochar that is added to the soil.

"The carbon content of biochar varies with feedstock and production conditions from as low as 7% (gasification of biosolids) to 79% (pyrolysis of wood at above 600 °C). Of this initial carbon, 63-82% will remain unmineralized in soil after 100 years at the global mean annual cropland-temperature of 14.9 °C", a 2021 study concludes. 

[ from earlier post ]
The above image shows how policies described in the Climate Plan can reduce the cost of energy and the cost of food, and facilitate the necessary transformation of society. The image shows examples of feebates that can help transform society in sectors such as agriculture, forestry, oceans, waste management and construction (center panel). The image also shows examples of local feebates to facilitate the transition to clean, renewable energy (top panel), as further discussed below.

Reducing the Cost of Energy and the Cost of Conflict

[ from earlier post, click on image to enlarge ]
As said, the cost of energy can best be reduced by a rapid transition to clean, renewable energy.

Much land is currently used for mining and drilling, refining and transport of fossil fuel (including roads, railways, ports and military protection to secure supply lines). 

Much land is also used to grow crops and trees that are burned for energy, such as wood used for heating, wood fed into power plants and crops grown for biofuel to power vehicles.

Mining, drilling and power plants are also large users of water. They need a lot of water, mainly for cooling, and they can pollute the water they use. 

Instead, by using electricity that is generated by wind turbines and solar panels, the total amount of water and the total area of land that is needed to produce energy can be reduced dramatically. 

Currently, much fossil fuel is transported by ship. International shipping emissions are not included in national totals of greenhouse gas emissions, despite the huge part of international shipping in global trade, carrying 70% of that trade by value and more than 80% by volume. Near the coast, batteries are increasingly powering shipping, but in international waters, shipping is almost entirely powered by fossil fuel, mainly bunker oil. Some 43% of maritime transport is busy merely moving fuel across the globe, so terminating fuel usage on land could in itself almost halve international shipping emissions.

In addition to commercial emissions caused by shipping of fuel, there are also military emissions that are excluded in national totals, such as international use by the military of bunker fuels and jet fuel, greenhouse gas emissions from energy consumption of bases abroad and the manufacture of equipment used by the military abroad. A large part of the military is busy securing and protecting global supply lines for fossil fuel, while burning huge amounts of fuel in the process. A 2019 analysis found that the US military's global supply chain and heavy reliance on carbon-based fuels make it the largest institutional consumer of oil and one of the largest greenhouse gas emitters, more than many countries worldwide.


Disputes over possession of fossil fuel are behind many international conflicts. Instead, nations can each cater for their power needs more independently and securely by transitioning to clean, renewable energy. A large part of a nation's infrastructure is used to transport fuel domestically, including trucks driving on roads and highways, while also using tunnels and bridges, parking places and stations for refuelling, while additionally fuel is transported by trains, planes and vessels that need ports, railways stations and tracks, and a lot of fossil fuel is burned in the process of transporting the fuel and constructing and maintaining these facilities.

Furthermore, part of the wood from forests and crops from farmland is used to supply biofuel, for use either to power vehicles, for heating or as fuel for power plants. Reducing the use of fuel will therefore also reduce nations getting into conflict with other nations, not only conflict over the possession of fossil fuel and over water to cool power plants, but also conflict over land and water that is used for agriculture and forestry to grow biofuel.

The easiest way to reduce the cost of conflict is to take away the reason for conflict, which in this case is the use of land to produce fuel.

In the video below, Robert Llewellyn interviews Mark Jacobson about The Climate Crisis.


Clean, renewable energy in the form of electricity generated by solar panels and wind turbines is already more economic than burning fuel for energy. Shifting to clean energy will thus lower the cost of energy, while people will also be less burdened by the cost of associated conflicts, which is more than the cost of the military and police taking care to avoid conflict, as the cost is even larger than that if conflicts do escalate and cause destruction of infrastructure, damage to soil and ecosystems and loss of lives, health and livelihood for all involved.

The comprehensive and effective action proposed by the Climate Plan can terminate the use of fuel and thus also reduce conflict, while additionally reducing the threat of runaway warming, and while additionally providing many environmental benefits and further benefits such as the termination of perceived needs for military forces to police global fuel supply lines and associated infrastructure.

In conclusion, reducing the use of fuel will in itself further reduce demand for fuel and the cost of energy. Replacing fuel by clean, renewable energy can additionally cut the need for energy through greater efficiencies of electric motors, appliances and devices. As said, this will also reduce the need for land and water, and - this cannot be said enough - avoid or delay climate collapse and catastrophe.

Air Taxis and Urban Redesign can further facilitate the necessary transformation

Electric vertical take-off and landing (eVTOL) air taxis can be an important component of the transformation of the way we travel, live, work and eat.

Using eVTOL air taxis can reduce the need for roads and associated infrastructure, further freeing up land, while the transition to electricity generated with solar panels and wind turbines can additionally free up land that is now used by utilities and their associated infrastructure such as power plants, power poles and towers, communication poles, etc. This land can instead be used for community gardens, (food) forests, parks, etc.

This doesn't have to be an instant shift. In existing cities, there already is a strong and growing movement to restrict the use of cars in city centers, and to instead add more walkways and bikeways. In this case, the roads will still be there, it's just their usage that changes. Another example is pipes. Many cities want to disconnect pipes that now supply natural gas to buildings, as it makes more sense to use electricity instead. The pipes will still be there, they just won't be used anymore, if at all. Digging up the pipes may make sense, but this may take some effort and time and it's therefore important that this issue is not used as an excuse to delay the rapid transition to the use of clean energy that is so urgently needed.

It's important to look at longer-term and more radical redesign. The transition toward greater use of air taxis enables space previously used for roads to instead be used for more walkways and bikeways, as well as for trees, community gardens, etc. This should be incorporated as part of wider and longer-term planning and redesign of urban areas.

In some places, this can lead to a more compact urban design, especially in city centers. After all, a lot of space becomes available as the use of roads for vehicle movements and for parking is reduced in an urban area, and this allows for more compact construction of new buildings and renovation of existing buildings that also reduces the distance between buildings, thus shortening the time it takes for trips by foot or bike in the city center, while there also will be plenty of opportunities for spaces to be created for air taxis to land and take off, e.g. in parks and on top of buildings.

At the same time, air taxis enable trips of up to a few hundred miles to be completed fast, while using little energy and causing little emissions. Furthermore, more remote places can be economically reached by air taxis without a need for roads to lead them to these places or for railway stations to be located nearby. Drone delivery of goods and air taxis can enable more people to live outside urban areas. More people will be able to have goods delivered to their home and to reach urban amenities if and when they want to, and more economically compared to using cars and roads.

The need for land and water to produce food and energy, and the need for land to transport goods and food can be reduced with the transitions to clean energy and to vegan-organic food. These transitions can also reduce the need for infrastructure such as pipes and poles for water supply, sewage, communications and power. Instead, we can have solar panels, microgrids, WiFi, rainwater tanks, biochar units, food forests and community gardens.

The image below illustrates how policies recommended in the Climate Plan can further reduce the need for infrastructure by supporting eVTOL air taxis, while transforming the space thus gained into community gardens, walkways, bikeways, etc.

[ from an earlier post ]

In conclusion, the situation can best be addressed through action as described in the Climate Plan.


Links

• Climate Plan (page)
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Plan (post)
https://arctic-news.blogspot.com/2019/06/climate-plan.html

• Climate Plan (group)
https://www.facebook.com/groups/ClimatePlan

• Air Taxis (group)
https://www.facebook.com/groups/AirTaxis

• Biochar (group)
https://www.facebook.com/groups/biochar

• Vegan Organic Food (group)
https://www.facebook.com/groups/VeganOrganicFood

• Secretary-General Warns of Unprecedented Global Hunger Crisis, with 276 Million Facing Food Insecurity, Calling for Export Recovery, Debt Relief (June 24, 2022)
https://press.un.org/en/2022/sgsm21350.doc.htm

• Confirm Methane's Importance
https://arctic-news.blogspot.com/2021/03/confirm-methanes-importance.html

• Land Use - by Hannah Ritchie and Max Roser
https://ourworldindata.org/land-use

• FAO - Water for Sustainable Food and Agriculture

• Global agricultural green and blue water consumption under future climate and land use changes - by Zhongwei Huang et al. 
https://www.sciencedirect.com/science/article/abs/pii/S002216941930383X

• UN - population

• 400,000 Pyrolysis Plants to Save the Climate - by Hans-Peter Schmidt and Nikolas Hagemann (2021) 

• Greenhouse Gas Inventory Model for Biochar Additions to Soil - by Dominic Woolf et al. 
https://pubs.acs.org/doi/full/10.1021/acs.est.1c02425

• Nitrogen fertiliser use could ‘threaten global climate goals’
https://www.carbonbrief.org/nitrogen-fertiliser-use-could-threaten-global-climate-goals

• IPCC AR6 WG1 Chapter 7
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_07.pdf

• Synergistic HNO3 H2SO4 NH3 upper tropospheric particle formation - by Mingyi Wang et al. (2022) 
https://www.nature.com/articles/s41586-022-04605-4

• IPCC AR6 WG1 Chapter 4
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_04.pdf

• Low oxygen eddies in the eastern tropical North Atlantic: Implications for N2O cycling - by D. Grundle et al. (2017) 
https://www.nature.com/articles/s41598-017-04745-y

• Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw - by Carolina Voigt et al. (2017) 
https://www.pnas.org/doi/10.1073/pnas.1702902114

• Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries - by Mark Jacobson et al.
• Numerous Benefits of 100% Clean, Renewable Energy

• How Much Water Do Power Plants Use? 
https://blog.ucsusa.org/john-rogers/how-much-water-do-power-plants-use-316

• Why does the Carmichael coal mine need to use so much water?

• View your government’s military emissions data
https://militaryemissions.org

• Military emissions
https://militaryemissions.org/wp-content/uploads/2022/06/military-emissions_final.pdf

• Emissions from fuels used for international aviation and maritime transport

• Decarbonizing the maritime sector: Mobilizing coordinated action in the industry using an ecosystems approach

• Assessing possible impacts on States of future shipping decarbonization

• News release: No environmental justice, no positive peace — and vice versa
https://www.hiroshima-u.ac.jp/en/news/73129

• Study: A global analysis of interactions between peace and environmental sustainability - by Dahylia Simangan et al.
https://www.sciencedirect.com/science/article/pii/S2589811622000210

• Also discussed at:

• Costs of War - Neta Crawford



Tuesday, April 5, 2022

Shortcomings of IPCC AR6 WGIII - Mitigation of Climate Change

In the video below, U.N. Secretary-General António Guterres comments on the launch of the IPCC AR6 WGIII SPM Mitigation report. 

[ U.N. Secretary-General António Guterres ]

The report has severe shortcomings, including: 

The IPCC makes it look as if the temperature rise could be restricted to 1.5°C above pre-industrial and insists there was a carbon budget left, to be divided by using monetary analysis. 

This narrative results in a failure to highlight in the SPM some key drivers of change (such as heat pumps in buildings and air taxis in transport) and in inappropriately referring to such key drivers of change as 'options', while failing to mention the best policies to achieve the necessary changes, i.e. through local feebates.


The agenda behind this narrative becomes further evident in phrases such as “CCS could allow fossil fuels to be used longer, reducing stranded assets” and “oil and gas assets are projected to be more at risk of being stranded toward mid-century”. 


Instead of “assets” at “risk” of getting “stranded”, these are liabilities that burden the world with a rising cost of clean-up and compensation claims. The IPCC gives CCS further undeserved importance by mentioning it no less than 32 times in the SPM, while a key driver of change such as heat pumps is mentioned only once, and not under buildings but industrial policy. 

The image below, from the report's SPM, shows “options” by sector with the length of each bar indicating their potential for emissions reduction by 2030, while the color inside the bar gives a cost estimate. 

[ from IPCC AR6 WGIII SPM, click images to enlarge ]

These are not genuinely options, since the dire situation leaves little choice and instead makes it imperative to act most urgently, comprehensively and effectively on climate change, in line with the Paris Agreement. 


The Paris Agreement does instruct the IPCC to describe the best pathways to achieve this and the IPCC has until now refused to do so. As Arctic-news blog has pointed out for more than a decade, mitigation is most effectively achieved by offering people a range of options, preferably through local feebates, which will also make such policies more popular, as a 2019 analysis (above) concludes.

[ from earlier post ]

Options are more appropriately realized in the form of feebates that can offer a range of options, with the more polluting options attracting fees and with the revenues used to fund rebates on the cleaner options. 

An example of a wider set of local feebates is depicted in the above analysis of EV policy. A more diverse set of feebates could include not only fees on fuel and fuel-powered vehicles, but also on facilities that sell or process fuel, vehicle registration, parking, toll roads, etc. It's important to act comprehensively, along several lines of action, e.g. to redesign cities and plan for air taxis

Given the urgency to act, such lines of action are all best implemented as soon as possible, yet at the same time many lines of action are best kept separate, as illustrated by the above image. 

The image on the right illustrates the difference between using a Gobal Warming Potential (GWP) for methane of 171 over a few years, vs the IPCC's use of a GWP of 28 over 100 years. 


Fees on sales of livestock products can raise revenue for pyrolysis of biowaste, with the resulting biochar added to the soil.  That would also support the transition toward a vegan-organic diet more strongly, in line with the conclusion of an earlier IPCC report that a vegan diet ranks highest regarding mitigation (image right, from an earlier post). 

The Climate Plan prefers local feebates. Where needed, fees can be set high enough to effectively ban specific alternatives.

Furthermore, instead of using money, local councils could add extra fees to rates for land where soil carbon falls, while using all revenue for rebates on rates for land where soil carbon rises.

That way, biochar effectively becomes a tool to lower rates, while it will also help improve the soil's fertility, its ability to retain water and to support more vegetation. That way, real assets are built, as illustrated by the image on the right, from the 2014 post Biochar Builds Real Assets.

Catastrophic Methane Rise 

The IPCC narrative hinges on radical cuts in methane emissions from 2020, as illustrated by the image on the right. 

Instead, methane rose by 15.27 ppb in 2020 and by 16.99 ppb in 2021, the two highest growth levels since the NOAA record began in 1984. 

The combination image below shows the catastrophic rise of methane. The image in the left panel shows a trend based on January 2008-December 2021 monthly mean methane data. 

When extending this trend, current methane concentration would be 1920 ppb. Note that methane in December 2021 was 18.6 ppb higher than in December 2020, and it now is April 2022.


The situation is even worse than depicted in above image, as NOAA's data are for marine surface measurements. Methane tends to rise in the atmosphere and accumulate at higher altitudes. As illustrated by the image below, mean methane level is growing fastest at the higher altitude associated with 293 mb. 


Anyway, have another look at the combination image further above. The right panel shows that, if the trend continues, a concentration of 3840 ppb (i.e. double the current concentration) could be crossed in 2029, which would translate into a carbon dioxide equivalent (CO₂e) of 768 parts per million (ppm) at a one-year global warming potential (GWP) for methane of 200

The image on the right shows a trend that, if continued, will cross a carbon dioxide level of 450 ppm by 2029. 

Add this 450 ppm for CO₂ to 768 ppm CO₂e for methane and the joint CO₂e could be 1218 ppm in 2029, i.e. it would have crossed the point at which the clouds feedback starts to kick in (at 1200 ppm CO₂e). 

The clouds feedback could thus raise the global temperature by 8°C by 2029, but when also adding the temperature impact of greenhouse gases and further drivers, the clouds tipping point could be crossed much earlier, say by 2026, while a temperature rise of 10°C could happen even before the clouds tipping point gets reached. Drivers could include nitrous oxide (N₂O, see image right), seafloor methane, water vapor, loss of Arctic sea ice and the falling away of the aerosol masking effect, as discussed at the Extinction page.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.

Links


• Secretary-General Warns of Climate Emergency, Calling Intergovernmental Panel’s Report ‘a File of Shame’, While Saying Leaders ‘Are Lying’, Fuelling Flames
https://www.un.org/press/en/2022/sgsm21228.doc.htm

• Mitigation of Climate Change Report 2022: "Litany of broken climate promises" - UN Chief
https://www.youtube.com/watch?v=P8rlLaT8v4Q

• IPCC Climate Change 2022 - Mitigation of Climate Change - Summary for Policymakers
https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf

• IPCC special report Climate Change and Land
https://www.ipcc.ch/report/srccl

• IPCC Report Climate Change and Land (review)
• Which policy can help EVs most?
https://arctic-news.blogspot.com/2019/10/which-policy-can-help-evs-most.html

• Confirm Methane's Importance
https://arctic-news.blogspot.com/2021/03/confirm-methanes-importance.html

• Biochar Builds Real Assets

• The Importance of Methane

• NOAA - Globally averaged marine surface monthly mean methane data
https://gml.noaa.gov/webdata/ccgg/trends/ch4/ch4_mm_gl.txt

• NOAA - Globally averaged marine surface annual mean methane data

• NOAA - MetOp satellite methane data - Infrared Atmospheric Sounding Interferometer (IASI)

• NOAA - Mauna Loa CO2 weekly mean and historical comparisons

• Clouds feedback

• Extinction

Friday, August 9, 2019

IPCC Report Climate Change and Land

The IPCC has just issued a special report Climate Change and Land, on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In its new report 'Climate Change and Land', the IPCC finds that vegan is the best diet to reduce emissions. Sadly, it is yet another missed opportunity to show some integrity.

[ click on image to enlarge ]
Indeed, little or nothing will change as long as the IPCC keeps downplaying the dire situation we're in.

As an example, the IPCC Report uses a very low value of 28 as Global Warming Potential (GWP) for methane, which is totally inappropriate and unacceptable given the rapidity at which the biosphere is deteriorating, given the accelerating pace at which extreme weather events are striking the land all around the world, and given the grim prospects for people worldwide in the absence of rapid and radical change.

The report finds that agriculture, forestry and other land use activities accounted for around 13% of carbon dioxide, 44% of methane, and 82% of nitrous oxide emissions from human activities globally during 2007-2016, representing 23% of total net anthropogenic emissions of greenhouse gases. If emissions associated with pre- and post-production activities in the global food system are included, the emissions could be as high as 37% of total net anthropogenic greenhouse gas emissions.

The Report adds an image showing that annual methane emissions from agriculture had reached some 4Gt CO₂eq in 2016. The IPCC notes that this 4Gt for methane's CO₂-eq is based on a GWP for methane of 28 over 100 years and without climate-carbon feedbacks, taken from its Fifth Assessment Report (AR5), published in 2014.

As said, the Report calculates that net greenhouse gas emissions from agriculture, forestry, and other land use were 23% of people's 2007-2016 emissions when using a GWP of 28 for methane. When using a GWP of 150, that share rises to 31%, as illustrated by the image on the right.

Instead of calculating methane's GWP over 100 years, a very short horizon is appropriate. Moreover, research published in 2016 and 2018 had already found methane to be more potent than IPCC's GWP for methane in AR5, as discussed in a recent post.

When using an appropriate GWP, the percentage of greenhouse gases coming from agriculture (in particular livestock products) increases dramatically, thus rightly highlighting the urgency for governments to act, e.g. by implementing local feebates, such as fees on livestock products and nitrogen fertilizers with revenues used to support soil supplements containing biochar, as recommended in a recent post.


Furthermore, the IPCC should have pointed the finger at the cartel of looters comprising fuel, meat, chemical and pharmaceutical industries and fuel-powered vehicle manufacturers and utilities that finances corrupt politicians and that goes hand in glove with a military-industrial complex that feeds on manufacturing conflict over resources that are the very cause of the wrath of pollution.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• IPCC special report Climate Change and Land
https://www.ipcc.ch/report/srccl

• IPCC special report Global Warming of 1.5°C
https://report.ipcc.ch/sr15/

• IPCC keeps feeding the addiction
https://arctic-news.blogspot.com/2018/10/ipcc-keeps-feeding-the-addiction.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Climate Plan (page)
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Plan (post)
https://arctic-news.blogspot.com/2019/06/climate-plan.html

• Olivine weathering to capture CO2 and counter climate change
https://arctic-news.blogspot.com/2016/07/olivine-weathering-to-capture-co2-and-counter-climate-change.html

Discussions

• Biochar
https://www.facebook.com/groups/biochar

• Geoengineering
https://www.facebook.com/groups/geoengineering

• Climate Alert
https://www.facebook.com/groups/climatealert

• Arctic News
https://www.facebook.com/groups/arcticnews

• Vegan Organic Food
https://www.facebook.com/groups/veganorganicfood

• Climate Plan
https://www.facebook.com/groups/climateplan



Friday, January 11, 2013

President Obama, here's a climate plan!


President Obama, now is the time to act on climate change! Climate change won't wait. There are encouraging signs indicating that a summit is being organized, to be hosted at the White House, to launch a comprehensive climate action plan with broad-based and bipartisan support.

What plan? Well, here's a climate plan!



The first line of action of most climate plans is to cut emissions. Two types of feebates, working separately, yet complimentary, can cut emissions most effectively and can be implemented locally in a budget-neutral way, without requiring complicated international agreements:
  1. energy feebates (pictured above) in sectors such as electricity, heating and transport, and 
  2. feebates in sectors such as agriculture, land use, waste management and construction (pictured below).
Pictured on the left are feebates that impose fees on sales of Portland cement, nitrogen fertilizers and livestock products. This will make further cuts in emissions.

The revenues are then used to fund rebates on clean construction and on soil supplements containing biochar and olive sand, which will remove carbon dioxide from the atmosphere and store it in buildings, soil, river banks, roads and pavement.

Working seperately, yet complimentary, energy feebates and feebates in agriculture and other sectors can dramatically bring down carbon dioxide levels in the atmosphere and oceans; as a result, atmospheric carbon dioxide could be brought back to pre-industral levels of around 280ppm by the end of the century.

For further discussion, also see Towards a Sustainable Economy
Thus, these two feebates will be effective on two lines of action, i.e. on cutting emissions and on reducing carbon dioxide levels in the atmosphere and oceans.

Even with these measures, temperatures will keep rising for some time, as excess ocean heat will get transferred to the atmosphere over the years and as aerosols (particularly sulfur) fall away that are currently emitted when fuel is burned and thus mask the full wrath of global warming.

Continued warming comes with numerous feedbacks. Combined, these feedbacks threaten to trigger runaway global warming, i.e. warming that will cause mass death, destruction and extinction.

How to avoid mass-scale death, destruction and extinction
This means that, in addition to the first two lines of action, further lines of action will be necessary, i.e. Solar radiation management, and Methane management and further action. Further action includes regulatory measures such as ending commercial flights over the Arctic and support for pyrolysis to avoid burning of biomass. The image below pictures several methods of Arctic methane management that should get high priority, given the threat of hydrate destabilization in the Arctic.
Arctic Methane Management

Fees imposed on commercial flights could fund solar radiation management, while the feebates described above will also be most effective in further lines of action, i.e. in Arctic methane management and further action.

Wednesday, January 2, 2013

Turning forest waste into biochar

Too much biomass waste in tundra and boreal forests makes them prone to wildfires, especially when heatwaves strike. Furthermore, leaving biomass waste in the forest can cause a lot of methane emisions from decomposition.

In order to reduce such methane emissions and the risk of wildfires, it makes sense to reduce excess biomass waste in fields and forests. Until now, this was typically done by controlled burning of biomass, which also causes emissions, but far less than wildfires do. Avoiding wildfires is particularly important for the Arctic, which is vulnerable to soot deposits originating from wildfires in tundra and boreal forest. Such soot deposits cause more sunlight to be absorbed, accelerating the decline of snow and ice in the Arctic.


A team of scientists at University of Washington, sponsored by the National Science Foundation, has developed a way to remove woody biomass waste from forests without burning it in the traditional way. The team has developed a portable kiln that can be assembled around a heap of waste wood and convert it to biochar on the spot, while the biochar can also be burried in the soil on the spot.

Demonstration in Kerby, Oregon,
Nov. 6, 2012, 
 by Carbon Cultures
Credit:
Marcus Kauffman at Flickr
The team initially started testing the effectiveness of a heat-resistant blanket thrown over woody debris.  The team then developed portable panels that are assembled in a kiln around a slash pile.

Students have set up a company, Carbon Cultures, to promote the technology and to sell biochar. CEO of Carbon Cultures is Jenny Knoth, also a Ph.D. candidate in environmental and forest sciences.

The kiln restricts the amount of oxygen that can reach the biomass, which is transformed by pyrolysis into biochar. The woody waste is heated up to temperatures of about 1,100 degrees Fahrenheit (600 Celsius), as the kiln transforms some 800 pounds of wood into 200 pounds of biochar in less than two hours. “We also extinguish with water because it helps keep oxygen out and also activates the charcoal [making it more fertile in soil].”

Currently, the total costs of disposing of forest slash heaps (the collections of wood waste) approximate a billion dollars a year in the United States, according to Knoth.

And of course, adding biochar to the soil is a great way to reduce carbon dioxide levels in the atmosphere. “Biochar is proven to fix carbon for hundreds of thousands of years,” Knoth said.
Demonstration in Kerby, Oregon, November 6, 2012, organized by Carbon Cultures Credit: Marcus Kauffman at Flickr

As said, when biomass waste is left in the open air, methane emissions are produced during its decomposition. Moreover, such waste will fuel wildfires, which produce huge amounts of emissions. The traditional response therefore is to burn such waste. Pyrolyzing biomass produces even less greenhouse gases and less soot, compared to such controlled burning.

Biochar is produced in the process, which can be added to the soil on the spot. This will help soil retain moisture, nutrients and soil microbes, making forests more healthy, preventing erosion and thus reduces the risk of wildfires even further, in addition to the reduction already achieved by removal of surplus waste.

A healthy forest will retain more moist in its soil, in the air under its canopy, and in the air above the forest through expiration, resulting in more clouds that act as sunshades to keep the forest cool and return the moist to the forest through rainfall. Forests reinforce patterns of air pressure and humidity that result in long-distance air currents that bring moist air from the sea inland to be deposited onto the forest in the form of rain. Finally, clouds can reflect more sunlight back into space, thus reducing the chance of heatwaves.

References

Recycling wood waste - The Daily of the University of Washington
Helping Landowners with Waste Wood While Improving Agribusiness and Energy - National Science Foundation

Related

- Biochar
- CU-Boulder gets into biochar